(11月16日)Engineering Electronic and Surface Structures of Metal Nanoclusters to Enhance Cluster Luminescence
日期:2024-11-14 阅读次数: 作者: 来源:bet36365路检测中心

报  告  人: 林鸿宾 博士(新加坡国立大学)

报告时间: 2024-11-16上午10:00~上午11:00

报告地点: 嘉锡楼413

组织单位: 雷振老师邀请

 

报告摘要:

 

  金属纳米团簇 (MNC) 的金属核通常小于 2 纳米,具有独特的类似分子的光致发光特性。尽管最初受到低发射效率的阻碍,但聚集诱导发射和配体工程等策略已经改善了它们的发光。然而,对它们对外部刺激的反应的系统探索仍然有限。这些工作希望通过研究物理和化学调制方法来优化 MNC 发光,最终设计出高效的发光装置,从而解决这一差距。

  第一部分研究了机械力对发光的影响,其中对 [AgS4] 微板施加力可通过改变晶体度来增强光致发光。接下来,对 Au25(MHA)18 纳米簇进行化学蚀刻揭示了产生高发光 Au22(MHA)18 簇的途径,说明了通过蚀刻进行的尺寸和结构控制。我们通过 pH 调节和配体修饰进一步增强发光,强调化学环境和价态的作用。最后,我们将聚丙烯酰胺凝胶与金属纳米团簇结合在一起,创建了一种可以通过外部刺激控制发光的装置,展示了其在先进材料中的实际应用。

  总之,这些研究表明,结合物理和化学调制技术可以有效优化MNC发光,从而推动其在高性能发光装置中的应用。

 Metal nanoclusters (MNCs), with metal cores typically < 2 nm, exhibit unique, molecule-like photoluminescent properties. Although initially hindered by low emission efficiency, strategies like aggregation-induced emission and ligand engineering have improved their luminescence. However, systematic exploration of their response to external stimuli remains limited. These works want to address this gap by examining both physical and chemical modulation methods to optimize MNC luminescence, ultimately designing high-efficiency luminescent devices.

 The first section investigates the impact of mechanical force on luminescence, where applying force to [AgS4] microplates enhances photoluminescence by altering crystallinity. Next, chemical etching on Au25(MHA)18 nanoclusters reveals pathways to produce highly luminescent Au22(MHA)18 clusters, illustrating size and structural control via etching. We further enhance luminescence through pH adjustments and ligand modifications, emphasizing the role of chemical environment and valence state. Finally, we integrate polyacrylamide gel with metal nanoclusters to create a device allowing control over luminescence through external stimuli, showcasing practical applications in advanced materials.

 In summary, these works demonstrate that combining physical and chemical modulation techniques can effectively optimize MNC luminescence, advancing their application in high-performance luminescent devices.

 

References

  1. H. Lin, X. Song, O. J. H. Chai, Q. Yao, H. Yang, J. Xie. Photoluminescent characterization of metal nanoclusters: basic parameters, methods, and applications. Advanced Materials, 2024, 2401002.

  2. H. Lin, M. He, Q. Jing, W. Yang, S. Wang, Y. Liu, Y. Zhang, J. Li, N. Li, Y. Ma, L. Wang, Y, Xie. Angle-shaped triboelectric nanogenerator for harvesting environmental wind energy. Nano Energy, 2019, 56, 269.

  3. H. Lin, Y. Liu, S. Chen, Q. Xu, S. Wang, T. Hu, P. Pan, Y. Wang, Y. Zhang, N. Li, Y. Ma, Y. Xie, L. Wang. Seesaw structured triboelectric nanogenerator with enhanced output performance and its applications in self-powered motion sensing. Nano Energy, 2019, 65, 103944.

  4. H. Lin, Y. Cao, Q. Yao, T. Chen, H. Shan, J. Xie. The synthesis of fluorescent nanoclusters based on the etching reaction. Nano Research, 2023, 17, 4631.

  5. H. Lin, X. Song, Q. Yao, H. Yang, J. Xie. Control of near infrared emission on thiolated Au25 nanoclusters from charge effect to ligand effect. Advanced Materials, 2024, submitted.

  6. H. Lin, Q. Yao, Y. Cao, X. Wu, T. Chen, O. J. H. Chai, H. Shan, J. Xie. Fluorescent enhancement of [AgS4] microplates by mechanical force induced crystallinity breaking. The Journal of Physical Chemistry Letters, 2024, 15, 7118.

  7. T. Chen, H. Lin, Y. Cao, Q. Yao, J. Xie. Interactions of metal nanoclusters with light: fundamentals and applications. Advanced Materials, 2022, 34, 2103918.