(10月31日)Machine Learned Electronic Structures and Optical Properties for Organic Semiconductors
日期:2024-10-25 阅读次数: 作者: 来源:bet36365路检测中心

报  告  人: 林舟(麻省大学安默斯特分校)

报告时间: 2024-10-31上午10:00~上午11:30

报告地点: 嘉锡楼413会议室


报告摘要:

Computational material discovery based on density functional theory (DFT) has achieved tremendous success in recent decades. However, the power of DFT on organic semiconductors (OSC) as molecular electronic materials suffers significantly from its computational complexity and intrinsic errors. Here we introduced a new exchange–correlation (XC) functional developed by us, referred to as ML-ωPBE, which evaluates the molecule-specific range-separation parameter (ω) in a range-separated hybrid (RSH) functional using a stacked ensemble machine learning algorithm and a composite molecular descriptor. [1] Compared to first-principles OT-ωPBE, a well-trained ML-ωPBE reaches a mean absolute error (MAE) of 0.00504 a0–1 for optimal ω’s, reduces the computational cost by 2.66 orders of magnitude, and achieves comparable predictive power in optical properties. In addition, ML-ωPBE shows a strong domain adaptation from closed shell molecules to open shell radicals. [2] From this study we concluded the importance of descriptors from semi-empirical quantum chemical calculations. Our study will set the stage for developing physics-based, and data-driven computational models for high-throughput material and drug discovery. 

[1] Cheng-Wei Ju, Ethan J. French, Nadav Geva, Alexander W. Kohn, and Zhou Lin. “Stacked Ensemble Machine Learning for Range-Separation Parameters”. The Journal of Physical Chemistry Letters 12.39 (2021), pp. 9516−9524. DOI: https://doi.org/10.1021/acs.jpclett.1c02506.

[2] Cheng-Wei Ju, Yili Shen, Ethan French, Jun Yi, Hongshan Bi, Aaron Tian, and Zhou Lin. “Accurate Electronic and Optical Properties of Organic Doublet Radicals Using Machine Learned Range-Separated Functionals”. The Journal of Physical Chemistry A 128.12 (2024), pp. 2457−2471. DOI: https://doi.org/10.1021/acs.jpclett.1c02506.


报告人简介:

林舟博士, 2009年本科毕业于中国科学技术大学,2015年博士毕业于美国俄亥俄州立大学。20152020年分别在麻省理工学院和加州大学伯克利分校从事博士后研究工作,期间获得美国化学会物理化学青年科学家奖。20209月入职麻省大学安默斯特分校化学系担任助理教授和博士生导师,主要从事量子力学和机器学习理论的开发以及在化学中的应用。期间获得美国国家自然基金会ADVANCE合作种子基金,美国科学进步研究协会Scialog碳中和研究基金,美国化学会石油研究基金,贝索斯地球基金会碳中和研究基金,和Sanibel量子化学青年科学家奖。林舟博士迄今已在知名化学期刊和计算机顶级会议上发表论文32篇,其中18篇以通讯作者或第一(含共同第一)作者身份发表。